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Fluid Flow & Bernoulli's Equation
Velocity Profles

Previously we said that the velocity of hydraulic fluid in a pipe is the
flow rate times the cross-sectional area of the pipe: v=Q A . Actually,
this velocity is the average velocity of all the fluid molecules moving
through the pipe. At low flow rates, all of the molecules move parallel to
the axis of the pipe, and we have laminar flow. Molecules at the
centerline move fastest, while fluid molecules at the wall remain
attached to the wall. The velocity profile is parabolic.

At higher flow rates, fluid molecules do not follow straight paths;
instead, eddies form in the flowstream, and we have turbulent flow.
Molecules at the centerline move fastest, but the velocity profile is
somewhat flattened. Notice that there is a velocity at the wall, so surface
roughness affects the flow. In turbulent flow, the rougher the pipe wall,
the greater the friction and pressure drop. Turbulence is undesirable in a
hydraulic system because it increases the pressure drop in a pipe, so it is
best to design hydraulic systems with laminar flow.

Introduction to Bernoulli's Equation

The 18th century Swiss mathematician Daniel Bernoulli developed an equation for calculating pressures and velocities in a 
flowstream. Two hundred years later, his equation found practical application in the development of carburetors, propellors,
and airplane wings.

In a hydraulic system, moving oil has kinetic energy, which is proportional to the square of the velocity of the oil. The pump
adds energy to the hydraulic fluid by raising its pressure. Gravity can also add energy if the hydraulic lines drop in 
elevation. Energy is lost through friction in pipes; flow through valves, orifices, and fittings; motors; and elevation 
increases. All of these energy losses can be measured as a drop in pressure. As a mathematician, Bernoulli had little 
understanding of friction; he assumed that friction is negligible, and the energy in a fluid at one point of a hydraulic circuit 
equals the energy at a second point. If we include pumps, motors, and friction, we can modify Bernoulli’s equation to say 
that the energy in a fluid at one point of a hydraulic system plus the energy added, minus the energy removed, equals the 
energy in a fluid at a second point.

The equation is Z 1+
p1
γ +

v 1
2

2 g
+H P−H M−H L=Z 2+

p2
γ +

v 2
2

2 g
, where 

Z = elevation change
p = pressure
γ = specific weight of the oil
v = velocity
g = acceleration of gravity

H P = pump head
H M = motor head
H L = head loss due to friction in the lines

Let's look at the pieces of the equation, then put the pieces together to solve a practical problem.

Reynolds Number

We can characterize laminar and turbulent flow with a dimensionless number developed by Osborne Reynolds in the 19th 
century. Reynolds number is the ratio of inertial forces to viscous forces; at low velocities, viscosity maintains a steady flow
and we have laminar flow. At high velocities, inertia overcomes viscosity and we get turbulent flow.

In the textbook, the symbol for Reynolds number is NR. In other textbooks you will see the symbol Re used instead. 

Reynolds number is N R=
v Dρ

μ
 where v is the average fluid velocity, D is the inside pipe diameter, ρ is density, and µ is 

absolute viscosity. Since the kinematic viscosity ν= μ
ρ

, N R=
v D
ν

. Be careful with this equation, because the Greek letter 

nu (ν) looks similar to the Roman letter vee (v). For hydraulic oil flowing through circular cross-section pipes, if

1

CL

CL

v
wall

= 0 v
average

v
wall

≠ 0 v
average

Laminar
flow

Turbulent
flow



MET 330 Introduction to Fluid Power Online Notes

N R<2000  we have laminar flow.

The textbook provides four equations for Reynolds number: two in US Customary, two in SI, each set with either absolute 
viscosity or kinematic viscosity. These equations also use specific gravity instead of density.

The U.S. Customary equations are 

N R=
7740 v D SG

μ

N R=
7740 v D

ν

   where   

v = velocity (ft/s)
D = pipe diameter (in.)

SG = specific gravity of the oil
μ = absolute viscosity (cP)
ν = kinematic viscosity (cSt)

The SI equations are 

N R=
1000 v D SG

μ

N R=
1000v D

ν

   where   

v = velocity (m/s)
D = pipe diameter (mm)

SG = specific gravity of the oil
μ = absolute viscosity (cP)
ν = kinematic viscosity (cSt)

The constants 7740 and 1000 include the unit conversions required to balance the equations. Units are provided in the 
examples below.

Example #1

A hydraulic pump delivers 1.5 gpm through a ½ in. diameter pipe. The oil has an absolute viscosity μ=110 cP  and a 
specific gravity SG = 0.9. Do we have laminar flow or turbulent flow?

Step 1 Calculate the fluid velocity v=Q
A

=Q 4

π D2=
1.5 gal.

min.
4

π(0.5in.)2∣231 in.3

gal. ∣min.
60 s ∣ ft.

12 in.
=2.45ft./s

Step 2 Calculate Reynolds number N R=
7740cP s

ft. in.
v D SG

μ
=7740 cP s

ft. in.
2.45ft.

s
0.5 in. 0.9

110cP
=77.6

Since Reynolds number is less than 2000, flow is laminar.

Head Loss

Hydraulic circuits lose energy in several ways. The primary way is friction in pipes, which releases energy in the form of 

heat. We call this type of energy loss head loss. Head loss is H L= f L
D

v2

2 g
 where f is the Darcy-Weisbach friction factor, 

L is the pipe length, D is the inside pipe diameter, v is the average fluid velocity, and g is the acceleration of gravity. In 

laminar flow through circular cross-section pipes, f = 64
N R

.

Head loss can also occur across a filter; in this case, H L=
Δ p
γ

 where Δp is the pressure drop across the filter.

2
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Example #2

Calculate the head loss in 2000 ft. of 1.5 in. diameter water pipe at a flow rate of 1 gpm. Water has a specific gravity of 1 
and an absolute viscosity of 1.3 cP.

Step 1 Calculate the fluid velocity v=Q
A

=1 gal.
min.

4

π(1.5 in.)2∣231in.3

gal. ∣min.
60s ∣ ft.

12 in.
=0.182 ft./s

Step 2 Calculate Reynolds number N R=
7740cP s

ft. in.
0.182 ft.

s
1.5in. 1.0

1.3 cP
=1621  Since NR is less than 2000, flow is laminar.

Step 3 Calculate friction factor f = 64
N R

= 64
1621

=0.0395

Step 4 Calculate head loss H L= f L
D

v2

2 g
=0.0395 2000ft.

1.5 in.
(0.182 ft.)2

s2

s2

2 32 ft∣12 in.
ft.

=0.323ft.

Physically, you can measure head loss in a horizontal pipe with
a pair of manometer pressure gauges. Install two T-fittings as
shown, with transparent vertical pipes. If there is no flow, the
levels will be the same. When fluid flows from left to right, the
level in the righthand manometer tube is 0.323 ft. lower than
the level in the lefthand manometer tube.

If the flow is turbulent, the the friction factor depends on
Reynolds’ number and the surface roughness of the pipe.
Remember, in turbulent flow, the fluid velocity at the pipe wall is not zero…it’s faster for a smooth pipe, slower for a rough
pipe.

If you look on page 126 of the textbook, there’s a table of surface roughness values for 7 different types of pipe material. 
Take these values with a grain of salt, because surface roughness can change over time, especially if the fluid is corrosive or
deposits minerals, like water. When I worked as a co-op student at a water company, we would dig up 12" water mains that 
had a 3" effective inside diameter, due to mineral buildup over many decades. Cast iron pipes are replaced because of 
minerals, not because of corrosion.

In 1944, L.F. Moody plotted the friction factor of 21 different pipes for NR = 4,000 to 100 million. You have a similar chart 
in the textbook, on page 127. All laminar flow occurs along this line on the left side of the chart. As the Reynolds Number 
increases, the friction factor drops. So you don’t want the flow rate to be too slow, because friction is higher at very slow 
speeds. When you go from laminar to turbulent flow, the friction factor f increases by a factor of 4 to 8…this is a big deal 
because head loss is proportional to friction factor.

Head loss occurs in valves and fittings, usually because of a change in the
flow direction or a change in the cross-sectional area that the fluid flows

through. The head loss in a fitting H L=K v2

2 g
 where K is a constant for

that fitting. Page 130 of the textbook lists K factors (a.k.a. loss
coefficeints) for various fittings. We can use the K factor to design the
plumbing in a circuit. For example, do you install one 90° elbow or two
45° elbows to make a 90° turn? The circuit with two 45° elbows looks
smoother. From the table on page 130, the K value for a 90° bend is 0.75;
for a 45° bend it is 0.42. Two 45° bends give us a total K value of 0.84, therefore the 90° bend is a better choice.

We can use the equivalent length technique to evaluate piping systems with valves and fittings. For a particular valve or 

fitting, the equivalent length L E=
K D

f
. For example, if the equivalent length of a fitting is 25 feet, the fitting produces the 

same friction and pressure drop of 25 feet of straight pipe.

3
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Example #3

Calculate the equivalent length of a ¼-open gate valve threaded onto a 1 in. diameter pipe carrying 30 gpm of oil with a 
kinematic viscosity of 100 cSt.

Step 1 Calculate the fluid velocity v=Q
A

=30 gal.
min.

4

π(1 in.)2∣231 in.3

gal. ∣min.
60s ∣ ft.

12 in.
=12.25 ft./s

Step 2 Calculate Reynolds number N R=
7740cSt s

ft. in.
12.25 ft.

s
1in. 

100 cSt
=948  Since NR is less than 2000, flow is laminar.

Step 3 Calculate friction factor f = 64
N R

= 64
948

=0.0675

Step 4 K =24  for a ¼-open gate valve with a 1" diameter pipe.

Calculate equivalent length L E=
K D

f
=24 1 in.

0.0675 ∣ ft.
12 in.

=29.6 ft.

Using Bernoulli's Equation

Now let’s put everything together to solve for the pressures in different parts of a hydraulic system. An engineer needs to 
calculate these pressures in order to select the right pipe sizes and purchase pressure gauges in appropriate ranges.

We can use a 10-step process for solving Bernoulli's equation, Z 1+
p1
γ +

v 1
2

2 g
+H P−H M−H L=Z 2+

p2
γ +

v 2
2

2 g
, where 

subscripts 1 and 2 refer to two different points in the hydraulic circuit.

Step 1 Draw the diagram & label pipe lengths, elevations, points of interest, directions of flow, etc.

Step 2 Write the Bernoulli equation & identify any terms that equal zero.

Step 3 Calculate fluid velocity from flow rate.

Step 4 Calculate Reynolds number NR. If this number is less than 2000, then we have laminar flow, and we can use the 
remaining equations. Turbulent flow requires a different solution for the friction factor; you'll learn how to do it in MET 
350.

Step 5 Calculate the friction factor f.

Step 6 Calculate the equivalent length of the fittings & valves.

Step 7 Calculate head loss due to friction in the pipes, fittings, valves, and strainers: HL.

Step 8 Calculate pump head and motor head, HP and HM (if applicable).

Step 9 Calculate pressure due to the weight of a fluid in a tank (if applicable).

Step 10 Assemble Bernoulli’s equation from its parts, and solve.

4
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Example #4

Oil flows at 7 gpm through a horizontal 1 inch ID pipe. Oil 
properties are S.G.=0.9  and ν=100cSt . If the pressure 
is 120 psi at one point, what is the pressure 25 feet 
downstream?

Step 1 Draw the circuit. There are no pumps, motors, 
fittings, valves, or elevation changes.

Step 2 Terms that go to zero in the Bernoulli equation 
include elevation change (because Z 1=Z 2 ), velocity 
change (because v1=v2 ), pump head (because there is no 
pump between points 1 and 2), and motor head (because 
there is no motor between points 1 and 2).

Z 1+
p1
γ +

v1
2

2 g
+H P−H M −H L=Z 2+

p2
γ +

v2
2

2 g
p1
γ −H L=

p2
γ

Step 3 Flow rate is volume per unit time; velocity is 
distance per unit time. Divide flow rate by cross-sectional 
area to get velocity: v=Q /A . There is no leak of fluid 
between points 1 and 2, so the flow rate is the same at both 
points: Q1=Q2 . Since the pipe diameter is constant, the 
velocity is the same at both points: v1=v2 .

v 1=
7gal.
min. ∣ 4

π(1in.)2∣231in.3

gal. ∣min.
60s ∣ft.12. in.

=2.860 ft./s

Step 4 Calculate Reynolds number. Since N R<2000  we 
have laminar flow.

N R=
7740 v D

ν =7740cSt s
ft. in. 100 cSt

2.860ft.
s

1 in.=221.3

Step 5 Friction factor f = 64
N R

. f = 64
221.3

=0.289

Step 6 There are no fittings or valves, so the equivalent 
length of the system is the length of the pipe.

L=L pipe=25 ft.

Step 7 The hydraulic fluid loses some energy due to friction

as it passes through the pipe. Head loss H L= f L
D

v2

2 g
. 

Don't forget to square the velocity.

H L=0.289 25 ft.
1in. ∣12 in.

ft.
(2.860ft./s)2

2(32.2 ft./s2)
=11.01ft.

Step 8 There is no pump or motor between points 1 and 2. H P=0,  H M=0

Step 9 There is no tank, so there is no additional pressure to
calculate.

Step 10 Bernoulli’s equation for this problem is
p1
γ −H L=

p2
γ  where γ is the specific weight of the oil, so

γoil=S.G.oil γwater . Solving Bernoulli’s equation for 

pressure at point 2, p2=[ p1
γ −H L]γ . The equation is 

easier to solve as p2=p1−γ H L  because fewer unit 
conversions are needed. 

The pressure change between the two points is
p2−p1=−4.3 psi . The negative sign shows that the 

pressure has dropped from point 1 to point 2. In this 
problem, the pressure drop is due to friction in the pipe.

γoil=0.9
62.4 lb.

ft.3 =56.16lb./ft.3

p 2=120 psi−56.16lb.
ft.3

11.01 ft.∣ ft.2

(12 in.)2
=115.7 psi

5
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Example #5

Oil flows at 3 gpm through a horizontal 0.75 inch ID pipe 
for 10 feet, passes through a 90° standard elbow into a 
vertical pipe which drops for 12 feet, passes through a 
second 90° elbow into a horizontal pipe for another 14 feet.
Oil properties are γ=54 lb./ft3  and ν=75cSt . If the 
initial pressure is 90 psi, what is the final pressure?

Step 1 Draw the circuit. There are no pumps, motors, or 
valves, but we have two fittings and an elevation change.

Step 2 Terms that go to zero in the Bernoulli equation 
include velocity change (because v1=v2 ), pump head 
(because there is no pump between points 1 and 2), and 
motor head (because there is no motor between points 1 and
2).

Z 1+
p1
γ +

v1
2

2 g
+H P−H M −H L=Z 2+

p2
γ +

v2
2

2 g

Z 1+
p1
γ −H L=Z 2+

p2
γ

Step 3 Velocity v=Q /A  where Q is flow rate. There is no 
leak of fluid between points 1 and 2, so the flow rate is the 
same at both points: Q1=Q2 . Since the pipe diameter is 
constant, the velocity is the same at both points: v1=v2 .

v 1=
3gal.
min. ∣ 4

π(1in.)2∣231 in.3

gal. ∣min.
60s ∣ft.12. in.

=2.179ft./s

Step 4 Since N R<2000  we have laminar flow. N R=
7740 v D

ν =7740 cSt s
ft. in. 75 cSt

2.179 ft.
s

0.75 in.=168.6

Step 5 Friction factor f = 64
N R

. f = 64
168.6

=0.380

Step 6 The equivalent length of the system is the length of 
the pipe plus the equivalent length of the two elbows. 
Calculate the equivalent length of an elbow as
L E=K D / f . From the textbook, the loss coefficient of a 

90° elbow is 0.75. We have two elbows, so KD/f is 
multiplied by 2.

L=L pipe+
K D

f

L=10ft.+12 ft.+14 ft.+2 [ 0.75⋅0.75 in
0.380 ∣ ft.

12 in. ]=36.25 ft.

Step 7 The hydraulic fluid loses some energy due to friction
as it passes through the pipe and two elbows. Head loss

H L= f L
D

v2

2 g
.

H L=0.380 36.25ft.
0.75in. ∣12in.

ft.
(2.179 ft./s)2

2 (32.2 ft./s2)
=16.22 ft.

Step 8 There is no pump or motor between points 1 and 2. H P=0,  H M=0

Step 9 There is no tank, so there is no additional pressure to
calculate.

Step 10 Solving Bernoulli’s equation for pressure at point 

2, p2=[(Z 1−Z 2)+
p1

γ
−H L] γ . In this equation, Z1 and Z2 

are the elevations at the two points. Pick one of these 
elevations to be zero, then use the system diagram to 
determine the other elevation. For example, if point 1 has 
elevation Z 1=0 , then point 2 has elevation Z 2=−12 ft. , 
and the change in elevation Z 1−Z 2=0 ft.−(−12 ft.)=12 ft.

p 2=[12ft.+90 lb.

in.2

ft.3

54 lb.∣(12 in.)2

ft.2
−16.22 ft.] 54 lb.

ft.3 ∣ ft.2

(12 in.)2

=88.4 psi

What if we had picked point 2 as the zero elevation? Then point 1 would have an elevation of +12 feet, and the change in 
elevation Z 1−Z 2=12 ft.−0ft.=12ft. …the result is the same.

6
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p
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=90psi
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12 ft.
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What if the flow direction were reversed? The math is the 
same, except Z 1−Z 2=0 ft.−12 ft.=−12ft.

Now the pressure at point 2 is lower…there is a greater 
pressure drop because the oil is being pumped uphill.

p 2=[−12 ft.+90 lb.

in.2

ft.3

54 lb.∣(12 in.)2

ft.2
−16.22 ft.] 54lb.

ft.3 ∣ ft.2

(12in.)2

=79.4psi

Now let's consider pumps and motors. Pumps add hydraulic power to a system, while motors extract hydraulic power from 
a system. The hydraulic power equation from Chapter 3 is the same for pumps and motors: P=pQ . Head pressure

p=γoil H  and S.G.oil=γoil /γwater . Substituting, pump head H P=
p

γoil
= P

Q γoil

= P
Q S.G.oil γwater

. With P in hp and Q in 

gpm, we can bake γwater into a unit conversion constant, so H P=
P

Q S.G.
3950 gpm ft.

hp
. We use the same equation for motor

head, H M= P
Q S.G.

3950 gpm ft.
hp

.

7
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p
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Example #6

Oil flows at 8 gpm from a tank through 1 inch ID pipes and
elbows, a pump, and a motor as shown. The pump adds 2 
hp and the motor extracts 1 hp. Oil properties are
S.G.=0.9  and ν=98cSt . What is the pressure at point 2, 

immediately downstream of the pump?

Step 1 Draw the circuit. There are no motors or valves, but 
we have a pump, one fitting and an elevation change.

Step 2 Fluid velocity at the surface of the tank is effectively
zero, because its surface area is hundreds of times the 
cross-sectional area of the pipe, and because all of the oil is 
returned to the tank, so the level remains constant.

The pressure at point 1 is zero. Since the motor is not 
between points 1 and 2, motor head is zero.

Z 1+
p1
γ +

v1
2

2 g
+H P−H M −H L=Z 2+

p2
γ +

v2
2

2 g

Z 1+H p−H L=Z 2+
p2
γ +

v2
2

2 g

Step 3 Velocity v2=
Q
A

. v 2=
8gal.
min. ∣ 4

π(1in.)2∣231in.3

gal. ∣min.
60 s ∣ ft.

12.in.
=3.268ft./s

Step 4 Since N R<2000  we have laminar flow. N R=
7740 v D

ν =7740 cSt s
ft. in. 98 cSt

3.268ft.
s

1in.=258.1

Step 5 Friction factor f = 64
N R

. f = 64
258.1

=0.248

Step 6 The equivalent length of the system is the length of 
the pipe plus the equivalent length of one elbow (the second
elbow is not between points 1 and 2, so it is not included).

L=L pipe+
K D

f
=4ft.+3ft.+0.75⋅1in

0.248 ∣ ft.
12 in.

=7.252ft.

Step 7 The hydraulic fluid loses some energy due to friction
as it passes through the pipe and elbow. Head loss

H L= f L
D

v2

2g
. Since we’ll need the term v 2

2 g
 later in 

Bernoulli’s equation, let’s calculate its value now.

v2

2 g
=(3.286ft./s)2

2 (32.2 ft./s2)
=0.1658 ft.

H L=0.248
7.252ft.

1 in. ∣12 in.
ft.

0.1658 ft.=3.58 ft.

Step 8 The pump adds 2 hp as it pressurizes the hydraulic 
fluid. H P=

2 hp
8gpm 0.9∣3950gpm ft.

hp
=1097ft.

H M=0

Step 9 Neither point 1 nor point 2 lie at the bottom of the 
tank, so there is no need to calculate the pressure at the 
bottom of the tank.

Step 10 Solving Bernoulli’s equation for pressure at point 

2, p2=[(Z 1−Z 2)+H P−H L−
v2

2

2 g ] γ
Z 1−Z 2=0ft.−4 ft.=−4 ft.

p 2=[−4ft.+1097ft.−3.58ft.−0.166 ft. ] 0.9 62.4lb.
ft.3 ∣ ft.2

(12 in.)2

=425 psi

8
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Example #7

Oil flows at 12 gpm from a tank through 1 inch ID pipes 
and elbows, and through a pump and motor as shown. The 
strainer at the inlet has a pressure drop of 2 psi. The pump 
adds 3 hp and the motor extracts 1 hp. Oil properties are
S.G.=0.9  and ν=105cSt . Calculate p2.

Step 1 Draw the circuit. We have a pump, a motor, two 
fittings, and an elevation change.

Step 2 The pressure and velocity of the fluid at the surface 
of the tank are zero, as in the previous example. Z 1+

p1
γ +

v1
2

2 g
+H P−H M −H L=Z 2+

p2
γ +

v2
2

2 g

Z 1+H P−H M−H L=Z 2+
p2
γ +

v2
2

2 g

Step 3 Velocity v2=
Q
A

. v 2=
12 gal.
min. ∣ 4

π(1in.)2∣231 in.3

gal. ∣min.
60s ∣ ft.

12. in.
=4.902ft./s

Step 4 Since N R<2000  we have laminar flow. N R=
7740 v D

ν =7740 cSt s
ft. in. 105 cSt

4.902 ft.
s

1 in.=361.3

Step 5 Friction factor f = 64
N R

. f = 64
361.3

=0.177

Step 6 The equivalent length of the system is the length of 
the pipe plus the equivalent length of both elbows. L=4ft.+3ft.+2ft.+1ft.+2 ft.+2 [ 0.75⋅0.75 in

0.177 ∣ ft.
12 in. ]

=12.71ft.

Step 7 The hydraulic fluid loses some energy due to friction
as it passes through the strainer, pipe, and two elbows. 

The head loss due to the strainer is Δ p / γ . Therefore, the 

total head loss is H L= f L
D

v2

2g
+Δ p

γ
.

v 2

2 g
= (4.902 ft./s)2

2(32.2 ft./s2)
=0.373 ft.

H L=0.177
12.71 ft.

1 in. ∣12 in.
ft.

0.373 ft.

+2 lb.
in.2

ft.3

0.9 62.4 lb.∣(12 in.)2

ft.2
=15.20 ft.

Step 8 The pump adds 3 hp as it pressurizes the hydraulic 
fluid, and the motor extracts 1 hp. H P=

3 hp
12 gpm 0.9∣3950 gpm ft.

hp
=1097ft.

H M= 1 hp
12 gpm 0.9∣3950gpm ft.

hp
=366 ft.

Step 9 Neither point lies at the bottom of the tank, so there 
is no need to calculate pressure at the bottom of the tank.

Step 10 Solving Bernoulli’s equation for pressure at point 

2, p2=[(Z 1−Z 2)+H P−H M −H L−
v2

2

2 g ]γ
Z 1−Z2=0 ft.−2ft.=−2ft.

p2= [−2ft.+1097 ft.−366ft.−15.2ft.−0.373 ft. ]

× 0.9 62.4lb.
ft.3 ∣ ft.2

(12in.)2 =278psi

Bernoulli’s equation shows us where the energy is added to the system and where it is used or lost. In this problem, the 
pump adds 1097 ft. of head; all losses total 383 ft. of head. Elevation change consumes 0.5% of the 383 ft., the motor 

9

Q
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3 ft.

4 ft.

2 ft. 1 ft.

2 ft.
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consumes 95.4%, friction consumes 4.0%, and the remaining 0.1% is used to move the fluid (kinetic energy).

Dr. Barry Dupen, Indiana University-Purdue University Fort Wayne. Revised May 2014. This document was created with
Apache Software Foundation's OpenOffice software v.4.1.0.

This work is licensed under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) See
creativecommons.org for license details.
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